STABILITY OF HOMOGENEOUS FLUID MOVING WITH FREE
CONVECTION IN HORIZONTAL SLOT UNDER VARIOUS
HEAT-TRANSFER CONDITIONS AT THE BOUNDING SURFACES

E. A. Romashko UDC 536.25

A monotonically increasing relationship is shown to exist between the critical value of the
parameter R, and Bi. Numerical results are given for the Re—Bi relationship with boundary
conditions of the third kind, and results for R, as a function of A/A, for boundary conditions
of the fourth kind.

The appearance of free convection in a thin layer of a homogeneous incompressible liquid between
unbounded horizontal plates heated to different temperatures is a unique phenomenon [1, 2].

Theoretical calculations performed on the assumption that the liquid temperature at the boundary
equals the plate temperature show that convection always occurs when R > 1708 [4].

Here we consider such a problem for the case in which there is a certain temperature drop at the
boundary (where, for example, there is a thin layer of material with poor thermal conductivity between the
liquid and the plate, which is maintained at a constant temperature).

We allow for this temperature drop by specifying the boundary conditions of the third kind in the form .

T r—Ty (1
0z

at the boundary.

The case in which the liquid temperature at the boundary equals the plate temperature (condition of
the first kind) represents a limiting case for our solution (when Bi — «).

We take the vertical axis as the z axis, and locate the origin at the center of the plane, so that the
equations of the upper and lower plates will be z = /2, z = —1/2.

The temperature T, of the undisturbed liquid that satisfies the equation

T, (2)
dz

and the boundary conditions

dT,

—h e, (1, =T) for 2= (3)

L
2
is represented as

T,+7T, ATq,
-2 2
2 1 4

With allowance for (4), we write the equation system for small disturbances [4, 5] in T, w in the form

(i—~avz) 7= AT w,
ot !

Ty =
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with boundary conditions

_xﬂ=+atT, z=iL, (6
0z 2
d !

=0, —=0, Z2= 4 —; 7

w % 3 (7)

the second equation of (7) follows from the equation of continuity, since the velocity components along the
x and vy axes equal zero at a solid boundary.

We introduce the dimensionless coordinates and time x/1, y/l, /1, at/lz, and use the initial symbols
X,V, %z, t for them,

If in (5) we separate variables,

T = 0 ATf(x, y) 0(2) exp (o8), ©w= —l‘?- f(x, 4) o (2) exp(ot), (8)
we obtain the system
Vi + M =0,
9 —-D)Du) ~ — RM®0, ®
Pr
(6—D)0=u0.
For the variables 0, w we write the conditions (6), (7) in the form
—Z?e=iBi9 for z=i——;—, (10)
d 1
o =0, E=O forz=i—2—. (in

It was shown in [4] that under the zero boundary conditions for 6 and the condition (11) for w, the
threshold of instability (appearance of stationary convective motion) must be determined by the equation
o = 0. (This proof is given in a short form in [3], p. 138.) This statement can also be proven for boundary
condition (10). The sole peculiarity is the appearance of the additional term I, = Bi(] 8(=1/2)[* + | 8(1/2) ),
which is positive for real Bi. We omit the proof,

We shall show that for the system considered, the critical parameter value R, is an increasing mono-
“tonic function of the parameter Bi.

Let us assume that the system is close to the critical state. Then the parameter R is positive, while
oj = 0. As a consequence, in the problem (9) with boundary condition (10), (11) we need only consider real
values of o (close to zero), It is not difficult to see that the problem of finding the eigenvalues and eigen~-
functions is associated with the variational problem of minimizing the functional [6]

I (o, 8, Bi) = '1(2 {(%-}—M%Y—l— RM? [(‘;%)2-—29(0]}@4- RM?Bi [ez (—;—) e (—_;)] (12)

—172

for a constant value of
1/2

(" do\? -
H (w, 6) =j ) + R | de (13)
—1/2 Z
or under boundary conditions (11) for w. The natural boundary conditions are imposed on the function 6.
If the functions 8, w actually minimize (12) under condition (13), then the maximum eigenvalue o equals
(v, 6, B
H(o, 6) (19

g =

since when we vary (14) under the condition (11) we obtain (9) and the condition (10). From the variational
principle formulated and the definition of R it follows that R, is a monotonically increasing function of Bi.
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TABLE 1. Values of the First Root & of Eq. (19)

- |
Bi
M 0 0,01 “ 0,1 0,25 ! 0,5 { t f 5 I 10 ©
0,5 1,250 1,253 1,324 1,368 1,480 |1,610(1,89711,9711 2,073
1 1,424 1,429 1,474 1,509 1,581 |1,677(1,903}1,969 2,063
2 1,661 1,667 1,680 | 1,700 1,723 11,770|1,907 1,957} 2,035
3 1,751 1,753 | 1,760 | 1,770 1,785 i1,809 1,899 (1,935 1,997
4 {1,770 1,771 0 1,775 | 1,780 | 1,790 |[1,805!1,861 1,891} 1,945

The minimum of R, occurs at Bi = 0, i.e., for a boundary condition of the second kind. (We note that
the value Bi = 0 for 8 in (10) does not mean that the system is heat-insulated. This is equivalent to specify-
ing a constant heat flux at the boundary.) The maximum of R, occurs when Bi — «. It can be shown that
when Bi — «, the maximum eigenvalue o (14) approaches the value o1 obtained under the zero boundary
conditions for the disturbance 6. As a consequence, when Bi — «, the limit of R, is the value (R;)j for a
boundary condition of the first kind.

If the plates bounding the liquid are fairly thick, we will have none of the above boundary conditions
for 6. In this case, the solution of (9) in the liquid must be coordinated at the boundary with the solution to
the heat-conduction equation for the plate (condition of the fourth kind), If the plate is taken to be infinitely
thick, the coordination conditions (requiring that the temperatures and fluxes be equal at the boundary) are
easily reduced to a condition of the third kind (10), in which Bi has the following form:

where the subscript 1 refers to the plate.
In this case, the parameter R is written as
R =8Bl (16)
avh

where the flux g is taken to be given.

In like manner, we can show that for a condition of the third kind the critical state of the system for
(10), (15) occurs at o = 0 and that the critical value of the parameter R, is a monotonically increasing
function of Bi; it must be remembered that Bi depends on M and o.

Let us look at the determination of the critical values of Rs. When o =0, system (9) takes the form

Do = RM?0, (17
Db=—w

with boundary conditions (10), (11) for constant Bi in the first case or for
By (18)
A

in the second.

The solution of the system (18) with boundary conditions (10), (11) is analogous to the solution with
zero boundary conditions given in [4]. Thus we shall not give it in its entirety, but shall only write the

transcendental equation for determining the roots, in the notation of [4], introducing additional symbols for
the quantities required in our case.

This equation has the form

tgE— Bi (ysh 2af + 8sin 2BE) 4+ 2xE (ch 20E — cos 2BE) (19)
® ™ Bi(ch 20 + cos 2BE) - 2E (v, sh 20 — 6, sin 2BE)

where a, B, vy, and 6 are given in [4] (54),

%=Az+32 A—y 3B

A —1 VA=1 ' (20)
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Fig. 1. Parameter R as a functionof M for various Bi
(boundary conditions of the first kind) (a) and A;/A
(boundary conditions of the fourth kind) (b); mn) line
representing critical values R, and corresponding values
Mc.

The problem consists of using (19) to determine the values of the roots 5j = Ej(Bi, M) as a function of the
parameters Bi, M, and then finding the minimum of R with respect to M for a specified value of Bi. By
definition (20),

R = miny, R = min,, {]W (1+ fl_g]%;@ )3] : (21)
It was established in [4] that under a boundary condition of the first kind, the minimum of (21) occurs

for the first root of (19) when Bi — «. From what we have proven above, under a boundary condition of the

third kind, R increases monotonically with Bi, Thus we might expect that for finite Bi, including Bi = 0,

a minimum will also occur for the first root of (19). To demonstrate this by direct computation, we first

determined the values of the first three roots of (19) roughly (by a graphical method) for several values of

Bi and M. The analysis showed that for finite Bi, there actually is a minimum of R for the first root; the

value M, corresponding to the critical value R, decreases with Bi. The values of the first root of (19) were

therefore determined quite accurately for a large number of Bi and M points (Table 1). Figure la shows

R as a function of M for various Bi, on the basis of the tabulated computed values.

For boundary conditions of the fourth kind, in Eq. (19), Bi depends on M in accordance with (18). Thus
for the given case, the table of roots of (19) was not recomputed, but was obtained for several values of
7\1/)\ and M by quadratic interpolation at appropriate parts of the table. Figure 1b shows the calculated re-
sults for R. As we see, with increasing heat-insulation, the instability of the liquid rises. As Bi increases,
the cell dimension (~1/M) decreases.

The results of a similar analysis for an inhomogeneous fluid (binary gas mixture) will be published
later.
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NOTATION

Gr is the Grashof number;

Pr is the Prandtl number;

AT =T{-T, is the difference in the temperatures of the upper and lower plates;
A, Ny are the respective thermal conductivities of liquid and plate;

ay is the heat-transfer coefficient;

A is the plate separation;

T, is the temperature of the undisturbed liquid;

T is the magnitude of the temperature disturbance;

W is the z axis velocity component;

g is the free~fall acceleration;

g = —(1/p)/(8p/8T)p is the coefficient of volume expansion of the liquid;

a, oy is the thermal~diffusivity coefficient for the liquid and plate, respectively;
M2 is the separation-of-variables constant;

) is the dimensionless value of the temperature disturbance;

w is the dimensionless z axis velocity component;

v =i+ (9%/0z?);

Vi = (6°/0x7) + (8%/0y%);
D = d?/dz%—M?;

R = gBl3ayaT/av;

@y = Bi/(2 + Bi).
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